Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 82(1): 15-29, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1525902

ABSTRACT

Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Deubiquitinating Enzymes , Enzyme Inhibitors/therapeutic use , SARS-CoV-2 , Ubiquitination/drug effects , COVID-19/enzymology , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/metabolism , Humans
2.
J Pharm Pharm Sci ; 24: 390-399, 2021.
Article in English | MEDLINE | ID: covidwho-1329250

ABSTRACT

PURPOSE: SARS-CoV-2 infection is associated with substantial mortality and high morbidity. This study tested the effect of angiotensin II type I receptor blocker, losartan, on SARS-CoV-2 replication and inhibition of the papain-like protease of the virus. METHODS: The dose-dependent inhibitory effect of losartan, in concentrations from 1µM to 100µM as determined by quantitative cell analysis combining fluorescence microscopy, image processing, and cellular measurements (Cellomics analysis) on SARS-CoV-2 replication was investigated in Vero E6 cells. The impact of losartan on deubiquitination and deISGylation of SARS-CoV-2 papain-like protease (PLpro) were also evaluated.  Results: Losartan reduced PLpro cleavage of tetraUbiquitin to diUbiquitin.  It was less effective in inhibiting PLpro's cleavage of ISG15-AMC than Ubiquitin-AMC.  To determine if losartan inhibited SARS-CoV-2 replication, losartan treatment of SARS-CoV-2 infected Vero E6 was examined. Losartan treatment one hour prior to SARS-CoV-2 infection reduced levels of SARS-CoV-2 nuclear protein, an indicator of virus replication, by 80% and treatment one-hour post-infection decreased viral replication by 70%. CONCLUSION: Losartan was not an effective inhibitor of deubiquitinase or deISGylase activity of the PLpro but affected the SARS-CoV-2 replication of Vero E6 cells in vitro.  As losartan has a favorable safety profile and is currently available it has features necessary for efficacious drug repurposing and treatment of COVID-19.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Antiviral Agents/pharmacology , Losartan/pharmacology , SARS-CoV-2/drug effects , Animals , Chlorocebus aethiops , Computational Biology , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/metabolism , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Ubiquitin/metabolism , Vero Cells , Virus Replication/drug effects , COVID-19 Drug Treatment
3.
Biomolecules ; 11(6)2021 05 28.
Article in English | MEDLINE | ID: covidwho-1256422

ABSTRACT

The urgent need for novel and effective drugs against the SARS-CoV-2 coronavirus pandemic has stimulated research worldwide. The Papain-like protease (PLpro), which is essential for viral replication, shares a similar active site structural architecture to other cysteine proteases. Here, we have used representatives of the Ovarian Tumor Domain deubiquitinase family OTUB1 and OTUB2 along with the PLpro of SARS-CoV-2 to validate and rationalize the binding of inhibitors from previous SARS-CoV candidate compounds. By forming a new chemical bond with the cysteine residue of the catalytic triad, covalent inhibitors irreversibly suppress the protein's activity. Modeling covalent inhibitor binding requires detailed knowledge about the compounds' reactivities and binding. Molecular Dynamics refinement simulations of top poses reveal detailed ligand-protein interactions and show their stability over time. The recently discovered selective OTUB2 covalent inhibitors were used to establish and validate the computational protocol. Structural parameters and ligand dynamics are in excellent agreement with the ligand-bound OTUB2 crystal structures. For SARS-CoV-2 PLpro, recent covalent peptidomimetic inhibitors were simulated and reveal that the ligand-protein interaction is very dynamic. The covalent and non-covalent docking plus subsequent MD refinement of known SARS-CoV inhibitors into DUBs and the SARS-CoV-2 PLpro point out a possible approach to target the PLpro cysteine protease from SARS-CoV-2. The results show that such an approach gives insight into ligand-protein interactions, their dynamic character, and indicates a path for selective ligand design.


Subject(s)
Deubiquitinating Enzymes/antagonists & inhibitors , Protease Inhibitors/chemistry , SARS-CoV-2/metabolism , Viral Proteases/chemistry , Binding Sites , COVID-19/pathology , Catalytic Domain , Deubiquitinating Enzymes/metabolism , Drug Design , Female , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ligands , Molecular Dynamics Simulation , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Protease Inhibitors/metabolism , SARS-CoV-2/isolation & purification , Viral Proteases/metabolism
4.
J Med Chem ; 63(6): 2731-2750, 2020 03 26.
Article in English | MEDLINE | ID: covidwho-831083

ABSTRACT

Deubiquitinating enzymes, or DUBs, comprise a family of proteases that regulate ubiquitination dynamics. Since their discovery, genetic and functional studies have nominated DUBs as a promising class for drug discovery across diverse therapeutic areas. Consequent probe and drug discovery efforts over the past 15 years have resulted in over 50 reported inhibitors and advances in DUB structural studies, assay formats, and chemical biology tools. Accumulating knowledge from these studies has enabled several important recent breakthroughs. In this review, we highlight recent successes in solving DUB-ligand co-structures and the development of rigorously characterized potent and selective inhibitors. We posit that these advances in pharmacological targeting of DUBs establish the enzyme family as targetable and provide a framework for other DUBs programs. Accordingly, we envision increasingly rapid progress in the development of potent and selective inhibitors for a wide range of DUBs and advancement of DUB-targeting drugs to the clinic.


Subject(s)
Deubiquitinating Enzymes/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Animals , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , Drug Development/methods , Drug Discovery/methods , Humans , Models, Molecular , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitination/drug effects
5.
Nature ; 587(7835): 657-662, 2020 11.
Article in English | MEDLINE | ID: covidwho-691112

ABSTRACT

The papain-like protease PLpro is an essential coronavirus enzyme that is required for processing viral polyproteins to generate a functional replicase complex and enable viral spread1,2. PLpro is also implicated in cleaving proteinaceous post-translational modifications on host proteins as an evasion mechanism against host antiviral immune responses3-5. Here we perform biochemical, structural and functional characterization of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PLpro (SCoV2-PLpro) and outline differences with SARS-CoV PLpro (SCoV-PLpro) in regulation of host interferon and NF-κB pathways. SCoV2-PLpro and SCoV-PLpro share 83% sequence identity but exhibit different host substrate preferences; SCoV2-PLpro preferentially cleaves the ubiquitin-like interferon-stimulated gene 15 protein (ISG15), whereas SCoV-PLpro predominantly targets ubiquitin chains. The crystal structure of SCoV2-PLpro in complex with ISG15 reveals distinctive interactions with the amino-terminal ubiquitin-like domain of ISG15, highlighting the high affinity and specificity of these interactions. Furthermore, upon infection, SCoV2-PLpro contributes to the cleavage of ISG15 from interferon responsive factor 3 (IRF3) and attenuates type I interferon responses. Notably, inhibition of SCoV2-PLpro with GRL-0617 impairs the virus-induced cytopathogenic effect, maintains the antiviral interferon pathway and reduces viral replication in infected cells. These results highlight a potential dual therapeutic strategy in which targeting of SCoV2-PLpro can suppress SARS-CoV-2 infection and promote antiviral immunity.


Subject(s)
COVID-19/immunology , COVID-19/virology , Coronavirus Papain-Like Proteases/chemistry , Coronavirus Papain-Like Proteases/metabolism , Immunity, Innate , SARS-CoV-2/enzymology , SARS-CoV-2/immunology , Animals , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Cytokines/chemistry , Cytokines/metabolism , Deubiquitinating Enzymes/antagonists & inhibitors , Deubiquitinating Enzymes/chemistry , Deubiquitinating Enzymes/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferons/immunology , Interferons/metabolism , Mice , Models, Molecular , Molecular Dynamics Simulation , NF-kappa B/immunology , NF-kappa B/metabolism , Protein Binding , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Ubiquitination , Ubiquitins/chemistry , Ubiquitins/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL